Introduction
In 2025, AI assistant development has become more accessible than ever. This guide will walk you through creating a production-ready AI assistant using the latest tools and frameworks.
Prerequisites
- Python 3.10+
- Basic understanding of machine learning
- Familiarity with API usage
- Access to GPU (recommended)
Development Environment Setup
First, let’s set up our development environment with all necessary tools:
1
2
3
4
5
6
7
8
9
10
| # Create and activate virtual environment
python -m venv ai-assistant
source ai-assistant/bin/activate
# Install core dependencies
pip install poetry
poetry init
# Add required packages to pyproject.toml
poetry add transformers torch langchain openai streamlit pytest black
|
Core Components
1. Model Selection and Integration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| # filepath: src/models/base.py
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Tuple, Dict, Any
class ModelManager:
def __init__(self, model_name: str = "gpt4-x-base"):
self.model_name = model_name
self.model, self.tokenizer = self._initialize_model()
"""Initialize the model and tokenizer"""
try:
model = AutoModelForCausalLM.from_pretrained(self.model_name)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
return model, tokenizer
except Exception as e:
raise RuntimeError(f"Failed to load model: {str(e)}")
def generate_response(self, prompt: str) -> str:
"""Generate response from the model"""
inputs = self.tokenizer(prompt, return_tensors="pt")
outputs = self.model.generate(**inputs, max_length=100)
|
2. Assistant Core Implementation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
| # filepath: src/assistant/core.py
from typing import Optional, List
import openai
from .models import ModelManager
from .utils import Logger
class AIAssistant:
def __init__(
self,
api_key: str,
model_name: str = "gpt-4-turbo",
):
self.api_key = api_key
openai.api_key = api_key
self.model_name = model_name
self.system_prompt = system_prompt or "You are a helpful assistant."
self.logger = Logger().get_logger()
async def get_response(self, user_input: str) -> str:
"""Generate a response to user input"""
try:
messages = [
{"role": "system", "content": self.system_prompt},
*self.conversation_history,
{"role": "user", "content": user_input}
response = await openai.ChatCompletion.acreate(
model=self.model_name,
messages=messages,
temperature=0.7,
max_tokens=150
)
self.conversation_history.extend([
{"role": "user", "content": user_input},
{"role": "assistant", "content": response_text}
return response_text
except Exception as e:
self.logger.error(f"Error generating response: {str(e)}")
return f"I apologize, but I encountered an error: {str(e)}"
|
3. API Interface
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| # filepath: src/api/main.py
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict
from src.assistant.core import AIAssistant
import os
app = FastAPI(title="AI Assistant API")
class Query(BaseModel):
text: str
context: Dict = {}
@app.post("/chat")
async def chat_endpoint(query: Query):
try:
assistant = AIAssistant(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="gpt-4-turbo"
)
response = await assistant.get_response(query.text)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
|
Advanced Features
1. Multi-Modal Processing
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| # filepath: src/assistant/multimodal.py
from PIL import Image
import torch
from transformers import VisionEncoderDecoderModel
class MultiModalAssistant(AIAssistant):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vision_model = VisionEncoderDecoderModel.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
async def process_image(self, image_path: str) -> str:
"""Process image and generate description"""
try:
image = Image.open(image_path)
# Image processing implementation
return "Detailed image description"
except Exception as e:
self.logger.error(f"Error processing image: {str(e)}")
return None
|
2. Memory Management
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| # filepath: src/assistant/memory.py
from typing import List, Dict
import json
import redis
class ConversationMemory:
def __init__(self, redis_url: str):
self.redis_client = redis.from_url(redis_url)
"""Save conversation history to Redis"""
self.redis_client.set(
f"conversation:{user_id}",
json.dumps(messages),
ex=3600 # Expire after 1 hour
)
"""Load conversation history from Redis"""
data = self.redis_client.get(f"conversation:{user_id}")
|
Testing
1
2
3
4
5
6
7
8
9
10
11
12
13
| # filepath: tests/test_assistant.py
import pytest
from src.assistant.core import AIAssistant
@pytest.fixture
def assistant():
return AIAssistant(api_key="test_key")
@pytest.mark.asyncio
async def test_assistant_response(assistant):
response = await assistant.get_response("Hello!")
assert response is not None
assert isinstance(response, str)
|
Deployment
Docker Setup
1
2
3
4
5
6
7
8
| # filepath: Dockerfile
FROM python:3.10-slim
WORKDIR /app
COPY pyproject.toml poetry.lock ./
RUN pip install poetry && poetry install
COPY . .
|
Docker Compose Configuration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| # filepath: docker-compose.yml
version: '3.8'
services:
ai-assistant:
build: .
ports:
- "8000:8000"
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY}
- REDIS_URL=redis://redis:6379
depends_on:
- redis
redis:
image: redis:alpine
ports:
- "6379:6379"
|
Best Practices
- Security
- Use environment variables for sensitive data
- Implement rate limiting and request validation
- Regular security audits
- Performance
- Cache frequent responses
- Implement request queuing
- Use async/await for I/O operations
- Monitoring
- Set up logging and error tracking
- Monitor API usage and response times
- Regular performance audits
Resources
Warning: Never commit API keys or sensitive data to version control.
Tip: Start with a simple implementation and gradually add features based on user feedback.